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Abstract 

Recommender systems are designed for offering products to the potential customers. Collaborative 

Filtering is known as a common way in Recommender systems which offers recommendations made 

by similar users in the case of entering time and previous transactions. Low accuracy of suggestions 

due to a database is one of the main concerns about collaborative filtering recommender systems. In 

this field, numerous researches have been done using associative rules for recommendation systems to 

improve accuracy but runtime of rule-based recommendation systems is high and cannot be used in 

the real world. So, many researchers suggest using evolutionary algorithms for finding relative best 

rules at runtime very fast. The present study investigated the works done for producing associative 

rules with higher speed and quality. In the first step Apriori-based algorithm will be introduced which 

is used for recommendation systems and then the Particle Swarm Optimization algorithm will be 

described and the issues of these 2 work will be discussed. Studying this research could help to know 

the issues in this research field and produce suggestions which have higher speed and quality. 
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1- Introduction 

Online business success highly relies on the ability to present personal goods, services, and information items to the 

potential customers. This result in willigness toward recommender systems. Through statistical methods and knoweldge 

discovery, these systems present services to the customers[1, 2]. Collaborating filtering system is one recommender 

system presents recommendation through detecting similar users based on enter date and previous transactions[3]. 

Collaborating filtering based recommender systems have many challenges such as recommend generation speed, 

database sparsity, scalability, recommends utility and so on. There have been great attempts for overcoming the 

collaborating filtering problems and these Attempts resulted in the high quality recommender generation. The present 

study reviews the previous studies in this area and examines the steps and resulted findings. 

Recommender systems define the information systems able to analyze the previous behaviors and present the 

suggestions for the current issues. In other word, recommender systems try to guess the user`s thinking through his 
similar behavior or other similar users in order to get the best case most appropriately to the user`s taste[1, 2]. 

There are many types of recommender systems such as: 

• Content-Based [4]: the working method of content filtering, based on item content analysis and trying to 

understand the discipline among them for generating the recommendation. 
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• Knowledge-Based[5]: the recommender systems based on knowledge record knowledge about users, items, one 

specific item, and needs of the specific user. 

• Memory-Based[6]: one database from users` known preferences is kept for all items and for each prediction, all 

computation is done all over this database. 

• Collaborating Filtering (CF)[2, 7]: the collaboration filtering method uses the similar users` information to give 

a recommendation. Therefore, collaborating recommender systems collect the information regarding the users` 

preferences.     

2- Challenges of Collaborating Filtering Based Recommender Systems 

The collaborating filtering method faces with challenges such as dispersion in the database to improve the scalability, 

increasing recommendations utility, synonyms and so on[8]. Attempts  regarding overcoming the problems of 

collaborating filtering are classified as the following: 

• Traditional Method based on neighborhood[9]: CF recommender systems based on item chooses the nearest 

neighbor through computing similarity among items. 

• The Clustering Method[10]: Through clustering items, the clustering algorithms reduce the search space and 
increase the scalability; through computing the similarities in members of one cluster the predictions would be 

generated. 

• Case-based Reasoning[11]: Case-based reasoning is a decision-making method based on solutions to similar 

solutions . This method has a strong learning ability and can use the previous experience of encountering new 

problems. In the dynamic and variant situations when the conditions are unknown or unclear, this reasoning 

method is appropriate. 

• Compound Algorithms[6]: Combination of CF with knowledge-based techniques and combination of GF with 

content based techniques.  

• Association Rule Mining (ARM)[12, 13]: This method is used to detect the dependence on existing items in one 

transactional database so that presence of some items in transactions implies the presence of some other items in 

the same transactions.  

3- Related Work of CF Recommender Systems Based on ARM 

Generally speaking the association rule mining (ARM) could be considered as a two-step Process: 

• Step One: finding all frequent items set  

• Step Two: generating strong association rules for frequent item set found in step one 

 Because the computation in step one is quite expensive, commonly the algorithms focus on the optimization of the 

operation since the efficiency of the algorithm is measured considering the complexity of this step. Rules are as 𝐴 → 𝐵 

where A is rule`s tail (or consequent) and B is rule`s head (or antcedent). The criterion to call association rules strong is 

based on two parameters as support and confidence. The rules in which the values of support confidence are higher than 

minsupport and minconfidence are called strong rules. Apriori Algorithm is the first algorithms for finding frequent item 

set. According to Tyagi and Bharadwaj [13] generally speaking, support and confidence threshold values are effective 

on the quality of output rule. That is why Adaptive-Support Association Rule Mining (ASARM) was presented to effect 

rules` quality by the least support adjustment. But this not an appropriate algorithm because it performs the Apriori 
algorithms several times during the operation steps and output with low efficiency. Multi-Objective Particle Swarm 

Optimization Association Rule Mining (MOPSO-ARM) was introduced for finding quality rules and uses evolutionary 

algorithms. They emphasized on this point that this algorithm uses Particle Swarm Optimization (PSO) algorithm 

inherently appropriates for the continuous environment but the rules used in this evolutionary algorithm as particles are 

discrete[3, 14]. 

3-1- Adaptive-Support Association Rule Mining (ASARM) 

Considering the fact that support and the confidence threshold values effect on the quality of Apriori algorithm output 
rules, the Adaptive-Support Association Rule Mining (ASARM) has been proposed [12, 15]. In this algorithm, rule 

generation has been done by a CBA-RG algorithm which is the evolutionary version of the Apriori algorithm. In 0  the 

steps of this algorithm are shown. This algorithm changes dataset rates to binary value based on average value of rates 

which results in a kind of like/dislike rate instead of showing how much like. Then it will change minimum supported 

threshold and generate rules by Apriori algorithm until enough rules have been made. Then will send the rules to 

recommendation system. 
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Figure 1. ASARM Algorithm Performance. 

Shortcomings of ASARM Algorithm: 

 Its efficiency decreases drastically because rules are generated several times.     

 Indirect rules cannot be generated, because the system uses a database with transactions including object-target 

transaction. By indirect transaction, it means the non-existing rules in the database that could be made by indirect 

rules. 

3-2- Evolutionary Algorithms 

Today, one important research area is developing search methods based on natural evolution principles. In 

evolutionary computations, the basic concepts of natural evolution are inspired in an abstract way to look for finding an 
optimized solution for different problems. There are methods such as quick search, binary search, first deep, and first 

surface search that return the responses in a certain way. These algorithms, however, are not efficient when facing with 

a vast amount of data. Even more advanced algorithms such as iterative deepening are helpless at in finding a solution 

or desired area when facing with hyperspace. There is a line of the algorithm by which the problems are gained randomly 

and in an indefinite base. These types of problems are known as evolutionary algorithms trying to computerize the 

existing method in nature. The genetic algorithm is one evolutionary algorithm. The main idea of this algorithm is 

transferring inherent features by genes. Each gene in the chromosomes is the representative of one feature. The 

chromosomes are regenerated through crossover and mutation operation and create a new generation. 

3-3- The Optimization of Multi-Objective Functions 

Another concept in evolutionary algorithms is the optimization of functions. Optimization of different or sometimes 

opposite functions is done simultaneously. Parameters` inputs are different and multi-objectives and the output turn out 
single-objective.  

1. There are two main principles for optimization of some objective functions. 

• Directing the search route toward getting the optimized responses. 

• Retaining and generating optimized response during response population. 

2. Single-objective methods encounter some difficulties when facing with multi-objective functions: 

• Not finding several responses during one-time algorithm running. 
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• No guarantee for finding the differences and variant optimized responses. 

• For problems with discrete variables having several optimized responses the traditional methods could not 

be applied. 

3. There are three solutions for multi-objective problems as the following: 

• Putting weight for different objective functions and adding them up. In this method, functions gain one weight 

rate W considering the importance degree so that the sum of functions` weight equals one. 

1 1 2 2 3 3Optimize w f w f w f  
          

11 2 3w w w  
 (1) 

• Using lexicographical method. In this method, the functions are ordered and ranked alphabetically. The 

functions with higher rank have more effects on the optimized responses. 

• Applying Pareto Method. Selection based on Pareto method is One repetitive ranking procedure is performed 

to rank the population members and The ranking is based on the whole Population. 

These types of algorithms are looking for different and optimized responses none of which is beaten/overcame by 

the other. 

3-4- Multi-Objective Particle Swarm Optimization Association Rule Mining (MOPSO-ARM) 

Another algorithm proposed based on ASARM is the multi-objective particle swarm optimization association rule 
mining (MOPSO-ARM) [13]. This algorithm tries to remove the shortcomings of ASARM. In Particle swarm 

optimization each rule is taken as one particle. Since all rules’ head is fixed and the tails are different from each other, 

then only the tails are taken. This algorithm is applied for finding optimized particles floating in the space. 

Particles are shown by support and confidence value in Figure 2 seven particle in Figure 2 are representative of rules 

Which the horizontal axis parameter is supporting represented by f1 and the vertical axis parameter is confidence 

represented by f2[16].  How to search for two locals guide for the P3 particle show in Figure 2. The search steps lbest1 

using f1 as the first function and f2 as the second function by using the FindLocalBest algorithm As follows: 

• First step: The set of all particles for a function f1 greater than or equal to is: 

   1 3 3 4 5 6 7Max f , , , ,P P P P P P  

• Second step: The neighborhood of the particle P3 for M = 3 is calculated as follows: 

   3 3 5 7, ,MLocalNbd P P P P  

• Third step: The lbest1 particle P3 will be as follows: 

     
3

1

3 2 3 2 5 2 7 7argmax (p ), (p ), (p ) p
j Mp LocalNbd P

lbest P f f f


   

 

Figure 2. Showing the Particles by Particles in a Two-Dimensional Space [13]. 

The multiple-objective particle swarm optimization (MOPSO) finds quality rules. The output of this algorithm is two 

parameters as 1best1 and 1best2. The speed direction and the best position in which the particle has been in are shown 

Solution Space 
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by vel(pi) and pbest respectively. The particles move in the space through the following relations and this repeats for 75 

generations. 

)

vel(p ) vel(p ) c (pbest(p ) p )1 1

1 2
c (lbest (p ) p ) c (lbest (p ) p2 2 3 3

ri i i i

r ri i i i

    

  

 (2) 

i
(p )

i i
p p vel   (3) 

To solve this multi-objective optimization problem weighting for multi-objective functions was applied [13] and the 

following relation is presented as association rule quality.  

     supp1 2quality A B W ort A B W confidence A B        (4) 

Where W1 and W2 are allocated weights to the support and confidence parameters so that 𝑊1 + 𝑊2 = 1 and 𝑊1, 𝑊2 ∈
[0,1]. 𝑊1  shows higher value and 𝑊2  shows lower value; highest quality of rule depends on the value of support rather 

than confidence and vice versa. These weights are selected experimentally. The sum of the quality of rules that are true 

for the target object is computed [13]. 

   argScore t et quality A B   (5) 

If computation is done to the target item, the target item is suggested to the user if the figure is higher than the defined 

threshold value. If the computation is done by the target user, that user is considered similar to the target user if the 

figure is higher than the defined threshold value and the similarity user`s interests are recommended to the target user. 

Once for data set with spare data and once for a data set with dense data, the algorithm is repeated and is compared 

to the 6 to 9 parameters. 

The correct number of items proposed

All item proposed
precision   (6) 

The correct number of items proposed

All item user ratings
recall   (7) 

The number of items Categories correct

All items categories
accuracy   (8) 

2  precision  Recall
1

precision Recall
F measure

 
 


 (9) 

Figure 3 show the steps of this algorithm. The shortcomings regarding this idea are as the following: 

• Generally, the environment for this problem is discrete while MOPSO algorithm is for continuous environments 

naturally and it demands to discretize the operators, however, there are special algorithms for the discrete 

environment. 

• The required operation for generating a new generation has moving nature and through repetitive and 
unnecessary mathematical operations of MOPSO algorithm, a lot of computations have been done resulting in 

more computation overloading. 

3-5- Association Rules Mining Algorithm through Genetic Algorithm (GA-ARM) 

Another algorithm similar to MOPSO-ARM has been proposed which is the association rules mining algorithm 
through genetic algorithm [17]. It has been stated that by using a genetic algorithm, the speed and exactness of the 

MOPSO-ARM were improved. The quality of generated rules is measured through Relation 5. 

Shortcomings regarding the GA-ARM are: 

• In the evolutionary genetic algorithm, several times referring to the algorithm to the database and repetitive 

computation bring about a slowdown in the recommender system [17, 18].  

• Some objects or items may have few votes and this result in less support and confidence as well as be wasting 

of the time and decreasing the exactness of the recommender system. Moreover, more works on the ARM 

recommender systems have been done emphasizing to apply this system in other applications or showing other 

aspects of the systems and they are: 
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Figure 3. MOPSO Algorithm Performance [13]. 

• Particle swarm with collaborating filtering based on recommender system through fuzzy features (2015)[3]: 

through PSO algorithm and a fuzzy based system they concluded that in this method collaborating filtering is 

based on a more precise model memory but it has lower scalability. 

• Development, position, and the procedure of the recommender systems: a comprehensive review of critical 

literature (2014) [19] : it is a review of recommender systems since 2001 to 2013 referring to PSO proving that 

there had not been a newe study in this area and based on the reviews a study for improving the efficiency or 

the exactness has not been proposed yet. 

• Personalized recommender systems based on evolutionary multi-objective optimization (2015)[20]: in this 

study, the task of a personalized recommender system is modeled as a multi-objective optimized problem and 

criteria such as exactness and variety are used for evaluation. 

• Improving variety of recommendations by classification of users based on individual`s information (1015)[21]: 

in this study, one classification system is introduced to improve the variety of recommendations, without losing 

recommender system`s exactness. 

The details of the resources provided in this area are shown in Table 1. 

Table 1. Review of the proposed methods. 

Data set Pros & Cons Implemented by Aim Algorithm Resource 

EachMovie 
Local Search, 

Slow 
C++ 

Association Rules for recommender system 

based on observation 
CBA-RG ASARM 

MovieLens 
Local Search, 

Medium 
NA 

explore only high quality indirect and direct 

associations 
MOPSO MOPSO-ARM 

MovieLens 
Local Search, 

Fast 
Matlab 

recommender system based on Association 

Rules for a target object 
Genetic GA-ARM 

 

Dataset 

 

Binary Dataset 

Explore association rules by 

MOPSO algorithms based items 
Explore association rules by 

MOPSO algorithms based user 

Explore direct association 
rules for target item 

Explore indirect association 

rules for target item 

Explore direct association 

rules to target users 

Votes on 

items 

Target user 

Explore indirect 

association rules to 

target users 

Recommender System 

based on Target Object 

 

 
Offline Process 
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4- Conclusion 

The present study examined the recommender systems and among existing methods, the introduced algorithms were 

compared focusing on collaborating filtering based on association rules mining. ASARM has low efficiency because it 

produces the rules several times. Then the evolutionary algorithms and the concept of multi-objective optimization 

functions are put in this algorithm and MOPSO-ARM and ARM were analyzed by genetic algorithm. MOPSO is 

designed for continuous environments and the operators need to be discrete, the computation operations repeat 

redundantly in generating the generations and have extra overloaded and it could reduce the efficiency of the algorithm. 

Although making operators discrete have been overcome in the genetic algorithm and the efficiency has been improved, 

it still makes the recommender systems slow because the algorithm refers to the database and does repetitive 

computations. Based on the findings, the system is more efficient and faster if the repetitive computation and 

unnecessary referring to the database being removed and they are optimized. Moreover, by removing spare data the 

exactness and efficiency could be improved. Introduced recommender systems in the present study are based on 

association rules. Trough association rules among voted items, the recommender systems detect the similarities among 

the users and recommend generating. Another recommender system could be designed so that it detects similarities 

between the users through an anthology of users` voted items and generates more efficient recommendations. The 

criterion for choosing ARM and improving the recommender systems are appropriate for further studies. Figure 4 show 

the scope and related works in this research area. Clearly, there can be more methods to improve accuracy and 

performance of this systems because the results of prior works show that the accuracy of this system was less than 70% 

and runtime of them takes a long time yet. 

 

Figure 4. Scope of Evolutionary Association Rule Based Collaborative Recommendation Systems. 
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